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The motion of a mechanical system consisting of n + 1 material points attracting one another according to Newton's law is 
investigated. A reversible system of differential equations is derived for the motion of n points relative to the "main body". A 
small parameter is introduced. When this parameter is equated to zero, each of the n points is attracted by the "main body" 
only, and the generating system splits into n two-body problems. Two types of generating periodic orbits, symmetric about the 
fixed set M of an automorphism, are considered: (1) with both eccentricities and inclinations equal to zero; (2) with inclinations 
equal to zero. 

It is shown that such orbits can be continued to non-zero values of the small parameter, as a result of which the system has 
periodic solutions of the first and second kinds. All these orbits are resonant: the mean motions of the bodies relate to one another 
as integers. In addition, at times that are multiples of the half-period the bodies are situated along a straight line, thus forming 
a "parade of planets". 

The results also apply to a "Sun-planet-satellite" type system. 

In the general theoretical part of the paper two methods are proposed for solving the problem of extending symmetric periodic 
motions to non-zero p a r ~ e t e r  values, and an upper bound is estimated for the domain of continuability. 

1. S Y M M E T R I C  P E R I O D I C  S O L U T I O N S  O F  T H E  R E V E R S I B L E  S Y S T E M  

We consider a 2~-periodic system 

u" = Uo(u ,v , t )+  IxUl(ix, u ,v , t )  

v" = Vo(U,~,,t)+ IxVl(ix, u,v,t) ,  u ~ R  t, v E R  n (l>__n) 

(1.1) 

and let M = {u, v: v = 0} be the fixed set of a linear automorphism of the system; IX is a small parameter. 
Suppose that when Ix = 0 system (1.1) has a 2n-periodic solution 

u = ~oCt), v = ~ ( t ) ;  q ~ ( - t )  = ~pCt), 0 ( - t )  = - ~ ( t )  

which is symmetric about the set M. Our problem is to determine whether 2g-periodic symmetric 
solutions of (1.1) e~]st when ix # 0. Such solutions are determined by the Heinbockel--Struble theorem 
[1]: if u ° and v U are t]ae values of u and v at t = 0, then a sufficient condition for periodicity is the existence 
of  solutions of  the system of functional equations 

v ° = O, v(Ix, u °, v ° ,x )  = 0 (1.2) 

Suppose that when Ix = 0 and v ° = 0 one has the condition det II 0'0s(0, u °, 0, ~)/Ou4 II # 0. Then, by the 
implicit function theorem, a symmetric periodic solution has a unique continuation for small Ix # 0. 
Consequently, the l~assibility of continuation depends only on the generating system; sufficient conditions 
for continuation, including such conditions in cases that are not isolated in Poincar6's sense, have already 
been obtained [2]. 

Note that the limiting value of Ix* of the domain in which symmetric periodic motions can be continued 
for non-zero Ix belongs to the domain. Otherwise the continuity of the II v(ix, u °, 0, r0 II as a function of 
Ix would be violated at Ix = Ix*. 

To solve specific mechanical problems, one proceeds as follows: Changing to perturbations p = u - 
~p(t), q = v - ¥( t )  we obtain the equations 
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p" = A(t) p + B(t) q + P(p, q, t) + IXU(IX, p + ~0(t), q + 0(t), t) 

q' = C(t) p + D(t) q + Q(p, q, t)+ IXV(Ix, p + ~o(t), q + t~(t), t) 

(1.3) 

which are again reversible, with a set M~ = {p, q: q = 0} of fixed points of a linear automorphism. If 
one can construct [2] a fundamental system of solutions 

q - ( t )  q+(t) 

of the part of the equations that is linear in p, q and independent of Ix, then symmetric periodic solutions 
will be continuable provided that det q-(n) ~ 0. 

Another approach is convenient when the linear part can be reduced to a system with constant 
coefficients. In that case one can write [2] 

~' = ~(la, g~, l ; , t ) ,  1~  R t-" 

"qi,.,. = Hi,s(ix, ~,'q,~,t), ~],s = ~i,s + Zi,s(ix,~,~q,~, t) 

"qi.s =~j_,,s + Hj,.~(ix, lg'q,~,t), ~).s=nj.s + Zj.s(ix,~,'q,~,t) 

rli,v =t%~l,v+Hj,v(Ix, t~'q,{,t), ~i,v =~¢v~],,v+ZI,v(Ix, l.~,~i,~, t) (1.4) 

~'~+~,v = ~:v;k+~,~ + ;k,~ + H~+L~(ix, g 'q,g,t) 

~),+L~ = ~:vTlk+Lv +q~,~ + Z~+~,~(B, ~,~, ~,t) 

the automorphism (t, ~, ~I, 0 --> (-t, ~, ~, -0 the solutions can be continued at all and in the case of 
non-critical values Kv # Ni (N ~ 7/). Clearly, this approach is especially useful if the linear part of  system 
(1.3) does not depend explicitly on t. 

In the analytic case, the domain of analyticity of the solution as a function of  IX is determined by 
Poincar6's theorem [3]. Suppose that the power series on the right-hand sides of system (1.3) converge 
for II P II, II q Ih I IX I <~ or, I t I ~< n. Then a solution of system (1.3) may be expanded in a power series in 

0 0 the initial values p ,  q and the parameter IX, which converge in the domain 

IlP°ll, IIq°ll, Irtl ~ =*, I t l<n  (1.5) 

The number t~* depends on tx and on the Lipsehitz constant L of system (1.3). It may be made as close 
1-1/2 as ~re to the number Inf {~2,  {x[exp(rd,) - ] } des" d. 

Within the domain (1.5), symmetric periodic solutions are constructed as series in powers of IX, with 
coefficients that depend on the initial data 

= ~o(t) + ~ ,  (t) + Ix2~2(t)+... 

"q = "% (t) + Ix111 (t) + l.tZ'q2 (t)+... 
= Co(t) + Ix~l (t) + IX'~2 (t)+... 

(1.6) 

The terms ~0(t), ~10(t), g0(t) characterize the perturbations of the generating system which, of course, 
may also have other symmetric periodic motions other than p = 0, q = 0. 

As we are interested in the possibility of continuity this specific periodic solution (p = 0, q = 0), let 
us put ~0(t) ~ 0, ~10(t) - 0, go(t) - 0 in the series (1.6). Then the equations for the kth approximation 
will be 

~=fk(t), ~)c=Ggi+g~(t), ~=R~k+rk(t) (k=1,2 .... ) (1.7) 

where fk(t), gk(t), rk(t) are 2x-periodic functions of t, which are known at the kth step, and the structure 
of the constant matrices G and R is clear from (1.4). Since the function {p(t) is even and the function 
¥(t)  odd for k = 1, it follows that fl(t) and gl(t) are odd functions of t, and rl(t) is an even function of 
t. If the mean value of rl(t) over a period is not zero, we add this number to the variable 111 as an additive 
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constant. Then the; periodic solution defined by (1.7) consists of even functions 61(t), "ql(t) and the odd 
function gl(t). Under  these conditions the solution always contains an arbitrary constant ~ 0 = ~1(0); 
the initial value for ~1 is uniquely defined, and 61(0) = 0. 

The evenness (oddness) of the functions fk(t), gk(t), (rk(t)) for k = 2, 3 , . . .  follows immediately if 
one takes into account that the role of  the functions ~o(t), t~(t) is now played by these functions plus 
the sum of the first k - 1 terms of  series (1 .6 ) .  

Thus, the symmetric periodic motion (1.6) is represented by even functions 6(IX, 0,  ~l(ix, t) and an 
odd function g(IX, t). The solution with p = 0, and .q = 0 determines a unique family of 1 - n arbitrary 
constants 6 ° and a parameter p; the initial values 6 ° and ~q0 are represented by series in ~ that converge 
for l ix l -<cx *. 

By Poincar6's theorem, the number or* depends on the Lipschitz constant L, which can be defined 
as the upper bound of  the moduli of the partial derivatives. This number depends on I ~:v I, and if the 
rv are purely imaginary, all the moduli 11¢v I may be made less than unity by applying the transformation 
~j, v + i~, v ---> (1]j, v -t- i ~j, v) exp(ikvt),  kv • 7/. In addition, terms linear in IX and independent of 6, "q, 
are cancelled out by an additional linear transformation, whose coefficients are 2~-periodic functions 
of  t. This is equivalent to the definition of the functions 61(t), lh(t), gl(t) in (1.6) 

Thus, one can always assume that pure imaginary ~:v in (1.4) are at most 1 in absolute value, while 
the not explicitly written out terms are non-linear in all of the variables Ix, 6, "q, ~. 

2. E Q U A T I O N S  OF M O T I O N  

Let us consider the fundamental problem of celestial mechanics--the motion of a mechanical system 
consisting ofn  + I material points M0, M1, • • •, M,,with masses m0, ml, • • •, m,,  respectively, attracting 
one another in acx~)rdance with Newton's law. The position of each point Mj (j = 1 , . . . ,  n) relative 
to M0 is determined by a number triple (4, TIj, {j). Then the equations of motion of the system are 

+ : o  

L j~s  

o.,. j=l r~ j j~., L .9 

L j,~s 

(2.1) 

2 2 2 2 2 2 2 2 • • 
ro~ = ks + rls + ~s, rsj = ( ~  - ~j) + (Tls - ~j) + ( ~ -  ~j) (s , j  = 1 , . . . ,  n; s ;ej), where ks = k(1 + Ixs), 
IX = max j  IXj, k 7 = kixj/IX, IXj = mj/mo, k = fro0, a n d f i s  the gravitational constant. 

The first term in the expression for the force in Eqs (2.1) characterizes the interaction of the bodies 
M0 and Ms, the second, the influence of the bodies Mj (j ;e s) on the motion of Ms. If the masses Ixs are 
small, then IX is small and this influence on the main problem--the motion of  the two bodies M0 and 
Ms-- is  small. 

Another advantage of system (2.1) is its invariance with respect to certain linear transformations 
together with simultaneous time reversal, from t to -t. One such transformation is a change of  sign in 
one of the groups of variables. Not wishing at this point to give a complete description of all linear 
automorphisms of system (2.1), we point out that the reversibility property enables one to prove the 
existence of  symmetric periodic motions and to construct them. 

3. P E R I O D I C  S O L U T I O N S  OF T H E  F I R S T  KIND 

If one transforms system (2.1) to cylindrical coordinates (p, 0, ~): ~ = pscos 0s, ~ = pssin 0s (s = 
1 , . . . ,  n), the equations of motion become 

p;  p.,.@,. ~ ~-p ~, k* 1 - J 3 + ~ -  p jcos(O s - e  j )  = 0  

+ bs ) j,~s 
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d(p~O;)+Ixp.~ ,~, k:[..l_l I ] . ,=' p, sm(O,-O,)=O 
jCs 

G+ +~t~; + =o (~: l  ..... ,0  2 ~2)-~ (p.* -I- j= l  L q 

r,~ =p~ +p~-2p~pjcos(e,-o~)+(G-;~) 2, r02~ =P~ +;~ 

(3.1) 

If IX = 0, we obtain the generating system which has a particular periodic solution 

p, =a.*(const), 0; =(0~(const), ~.,. =0,  2 _~ • . (0 .*a ;  = k.,. ( s  = 1 . . . . .  n )  ( 3 . 2 )  

In this solution each of the bodies Ms moves in a circle of radius a.* at a constant angular velocity (0s, 
all these circles lying in one fixed plane and having a common centre M0. As in the three-body problem 
[4], we will call periodic solutions arising from (3.2) when IX ~ 0 solutions of the first kind. 

Putting p.* = a,(1 + Ps), O~ = (0d + ~ (s = 1 , . . . ,  n) in the neighbourhood of the generating solution, 
we obtain a system of equations for the variables Ps, ~ ,  ~ which is conditionally periodic in t, with 
frequencies {(02 - (01 . . . .  , (on - (01}. This system will be periodic in time if (0~ - (01 =/so) ((0 > 0), l~ 
7/(s = 1 , . . . ,  n). In that case, obviously, (0s is not a multiple of (0 if (01 is not a multiple of (0. If one 
now changes to a new dimensionless time variable x = c0t and a dimensionless variable g(~ --~ as~), 
the equations will be 

(02 ( l + p s )  + 
p~i - ( I  + P.,.) ((0s / (0+ Vl,.) 2 + (0---~- [(1+ p.,)2 + {~]Y2 

[ r~ r0. , -~. ( l + p j ) c o s [ ( l , . - l j ) x + V , - v j l  = 0  
j= l  .ff 
j ~ : s  

I, 1] ~ l / ; + 2 ¢ o , / ( ° + x l / : p ; q  B =o.,.L 3 , ! + p.,. (I + P.,) i =1 ~i r~j ( l+pj )s in[( l" - lJ )x+~V•"-¥J]=O 
j#s 

r,;+-~-; [(]+p.,)~+~]~ +~, e . . . - : r / ~ , , / ~ -  ~ =o 
• j ;~.(0 Lr.;J Lr6j . , , /  • j 

(3.3) 

rs~ = a.~(l + p.*)2 + a~(1 + pj)2 _ 2asaj( 1 + p.*) (1 + pj) cos[(/., - l j )  z + Vs - ~ j ] +  

+(a,;,-,,&) 2, ro j =,qm+ 

where the prime denotes differentiation with respect to x. 
The explicit form of these equations enables us immediately to estimate the domain of analyticity, 

which is obviously determined by the possibility of expanding the reciprocals of the distances in series. 
In any case, the radius of convergence ¢t may be any number not exceeding, say, 1/2. Then the Lipschitz 
constant L depends on ¢t and is determined from the partial derivatives. Once ot has been chosen, L is 
a function of the parameters as, (01, (0, Ix. 

For this problem to be formally identical in all its detail with the problem of Section 1, let us assume 
that the change of variable (Ps, 0s) ---> (P.*, 0~), 0* = 0s - (01T, has been made in (3.1), thus transforming 
to a system of coordinates rotating uniformly at angular velocity oh. In these new variables one has 0* 
= 1.*(0, in the generating solution, while the fixed set of the automorphism is precisely the axis ~* (~* = 
p.*cos 0% ~ = p.*sin 0",). Clearly, system (3.3) retains its previous form under this transformation. 

System (3.3) is a 2n-periodic in x. Therefore, if the linear approximation satisfies the conditions for 
the symmetric periodic solution (3.2) to be continuable to non-zero Ix, such motions will exist at actual 
values of Ix ~< It*. Bearing in mind that the application of these results to an actual Sun-planet system 
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needs a special treatment, including the construction of periodic motions, we shall confine ourselves 
here to the qualitative aspect of the problem. 

The part of system (3.3) which is linear in p, ~,  ~ and independent of 12 is 

. .  , 2  

p., -3co,. p., -2CO.,V.,.+ . . . .  0 (co~ =col ~co+l,.) 
, , 2  

VlI.+2CO.~ pl,.+ . . . .  0, (;+co.,. ;.,.+ . . . .  0 ( s = l  ..... n) 

(3.4) 

An elementary tra:asformation enables us to write the first two equations as 

p.,. +co.,. p.~ -2c.,.+ . . . .  0, VI,. =c.,.-2co~ps, cl,.+ . . . .  0 

Now, taking the automorphism (% p, p', ~, ~b', {, {') --) (-x, p, -p ' ,  -~ ,  ~' ,  ~, {') into consideration, we 
immediately obtain a sufficient condition for the symmetric periodic motions (3.2) to be continuable: 
col/co + l~ ~ l ~ Z. Since a zero solution for { exists and the continuation is unique, we obtain plane 
orbits. 

Theorem 1. If ~t =~< ~t*, the many-body problem has solutions in which the bodies Ms (s = 1 . . . . .  n) 
describe dosed  plane orbits in a system of coordinates ~*rl*~ rotating at a constant angular velocity 
o)1. These orbits are symmetric about the ~* axis, the period of the motion of Mj (j = 2 , . . . ,  n) in 
orbit around M0 equals Tj = 2~/I ljco I (where lj ~ 7/, lj ~ O, with lj distinct), while the body M 1 oscillates 
with period T1 = 2n/co about a relative position of equilibrium on the ~* axis at a distance al from 
M0. As"Ix ~ 0 the orbits become concentric circles about M0, of radii as = If(m0 + m~)/co2] 1/3, 
where I cos I = I col + lsco I are the mean motions of  the bodies Ms in orbits in the fixed space, with 
co~./ta + ls ~ l e 7/. 

In the fixed space the steady motions are described by functions 

~.~ = as[l + ps(X)] cos[(tal / CO+ I s) ~ + Vs(x)] 

"qs =as[l+ps('C)]sin[(cot Ico+l.,.)x+W.,('Q], ~s = 0  ( s = l  .....  n) 

where ps(x), Ys(x) are 2x-periodic functions of x. Nevertheless, this solution is not periodic, as the 
numbers col and co are rationally independent. 

In a system of coordinates rotating at angular velocity 001, the bodies M0, M1, • • •, Mn will be situated 
at times which are; multiples of n/co along a single fixed straight l ine--the ~. axis. Obviously, at 
these times the bodies form a straight line in the fixed system of coordinates too (see Fig. 1). In that 
case, however, the straight line itself is displaced by an angular distance that is a multiple of 
A = col~/co. 

Thus, the steady periodic motions point to a possible way of explaining the resonances property of 
the Solar system and the phenomenon of "parades of planets". 

The first approximation of the problem with respect to ~t is 

J 

y=; t0- r,.'ja~ 

,2 p~i +co,. p.,. -2c,. +~t ~ kj {a s ,a/cos[(/.,. - l j )  ¢1} 
• " j=t co2r3 = 0 (s = 1 ..... n) 

j~s 'Jas 

Integrating the equations for c,, we obtain 

co2a~ j=l (l.,. - l j )  rsj 
j~s 

+ const 

Then the remaining equations yield Ps and ¥,  as elliptic functions of x. 
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Fig. 1. 

In the generating system, the variable Cs represents the variation of the area constant in the problem 
of two bodies M0 and Ms and maintains a constant value. When Ix * 0 and the solution is symmetric 
and periodic, c~ is a periodic function of x, and the oscillations of Cs take place about the zero average. 
In that case 

I1 

~, ascsk; = 0 
s=| 

reflecting the conservation of angular momentum. 

4. P E R I O D I C  SOLUTIONS OF THE SECOND KIND 

When IX = 0 system (2.1) splits into n subsystems (indexed by s), each of which describes the 
unperturbed Keplerian motion of two bodies M0 and M s. The orbits are second-order curves 

~'s 20 . . c e ~/k~ + h~c.~ 
p.,.(O.,.)= l+escosO , p.,..,.=c,.(const), ~,,.=-~-~ , .  e.,.= k~.. (4.1) 

where cs and hs are the area and energy constants in the sth problem. The motions occur along ellipses 
if 0 < es < 1 for all s. In symmetric periodic motions, the axes of the ellipses may lie along either the 

or the ~s axes, simultaneously for all s (Fig. 2). Thus, the relation between the Cartesian and polar 
coordinates is given by one of the formulae 

~cos O.,. ~ sin 0,. 
~., = p.,(e.,) Lsin Os, = p.,(e.,) Lcose, (4.2) 

The elliptic motion (4.2) is periodic in the sth subsystem. For the entire generating system, solution 
(4.1) forms a family of symmetric conditionally-periodic motions which is 2n-parametric with respect 
to the initial data (cs, hs). Some of these motions are periodic--those for which 

n.,.=~f~sla~=l.,.tj) (ls~7/), ks=as( l -e~) ( s= l  ..... n) (4.3) 
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where as are the semi-major axes of the ellipses and co is a positive quantity. These relations mean that 
the mean motions along the generating ellipses relate to one another as natural numbers. 

The n - 1 conditions (4.3) are imposed on the 2n constants cs, hs. Hence we have an (n + 1)-parametric 
family of  periodic motions, depending on the initial data. We also note that conditions (4.3) involve 
only the semi-axes as of  the ellipses, without affecting the eccentricities es, while the direction of the 
motion is determined individually along each ellipse. 

Periodic solutions obtained by continuing the elliptic solutions (4.1) to non-zero values of  the 
parameter ~t are lolown as periodic solutions of the second kind. 

Let us consider the upper one of the two possibilities in (4.2). Then, in the neighbourhood of the 
generating solution (4.1) 

~.,. + ilq.,. = p,. (0.,.) e iO" (I + Ps ), ~., - i~.,. = p.,.e -i°" (I + q.~) (s = I ..... n) 

(in the other case one should simply interchange ~ and rl~). This yields equations forps and q~, through 
which one can estimate the domain of analyticity and the Lipschitz constant. The full equations are 
rather cumbersome; the part linear inp~ and q,, and independent of St is 

d Zp.~ dp.,. 3ps 
"~',2. +2i  dO,. 2~,.,. (P" +q")+ . . . .  0 

d2 q.,. . dq.~ 3ps 
dO~-2i (p.,.+q.,)+...=O (s=l ..... n) 

• dO.,. 2Z,., 

(4.4) 

The unwritten terms are 2x-periodic functions of 01, • • •, On, and if conditions (4.3) are satisfied they 
are 2re,periodic in the single variable 0 = cot, which is indeed taken as a new independent variable. When 
that is done 0s = 1~0 + f~(Is0), where f~ is a Fourier series in 0s. With that in mind, it is nevertheless 
convenient or our purposes to retain the angle 0s as the variable for the sth subsystem. 

Elementary reduction of system (4.4) yields the final system 

dc.,. + . . . .  0, d(p., - q s )  +2i(p.,. + q s ) - c s +  . . . .  0 
dO., dO.~ 

(4.5) 

which is invariant lmder the change of variables (0s, cs, Ps - qs, Ps + qs) ~ (-0s, cs, -(lOs - qs), Ps + qs), 
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(s = 1 , . . . ,  n). System (4.5) in the linear approximation splits into n subsystems. Moreover, for each 
s the construction of the general solution of the above part requires an analysis of a single second-order 
equation 

d2x dx 
dO 2 +g(O)~-~+f(O)=O,  f ( O + 2 g ) = f ( O ) ,  g(O+27t)=g(O) (4.6) 

which is invariant under the change of variable (0, x, x') ---> (-0, x, -x'), x" = dx/dO. 
For each solution x = x(0), x' = x'(0) of Eq. (4.6) there is also a solution x = x(-0), x" = x'(-0), and 

by virtue of the linearity of the functions 

(1) x=x(O)+x(-O) ,  x '=x ' (O) -x ' ( -O) ,  (2) x = x ( O ) - x ( - O ) ,  x '=x ' (O)+x' ( -O)  

are also solutions. For the first of these solutions we have x'(0) = 0, and for the second, x(0) = 0. 
Therefore, if the characteristic exponents of (4.6) are __.~:, a fundamental system of solutions of Eq. 
(4.6), given that the initial data from the identity matrix, is 

l A+(0,1c) A_(O,K) [ 
I A*(e,~c) A:(O,K) I (4.7) 

A+(0, K) = tx(0) e ~ + ot(-O) e -~°, A~* (0,:.'.) = 0t(0) e ~° + ~*(-0) e - ~  

where the 2If-periodic functions or(0), ix*(0) equal 1/2 at zero. 
Now let mrs be the characteristic exponents of the equations forps + qs in system (4.5);Since the T /T vectors p and q of Eq. (1.3) in this case have the form p = (cs, ps + qs) and q = (Ps - qs, Ps + qs) , it 

follows that if Ks ;~ Ni (N E 7/), then 

p' U ..' o ,II ct., (0s) A+(Os,rs 

r:'(o,.) 
A+ (Os, K , .  ) = Ct s (0 s) exp(KsO s) + ots (-0~) exp(-KsO,.) 

A" (0 s , K.,. ) = ot.~ (0 s) exp(KsO.,.) - a~ (-0.,) exp(-KsO.,) 

r 2 (0.,., K.,. ) = ~,: (O.,.) exp(r.,.O.,.) - ~,~ (-O.,.) exp( - ~:.,.O.,. ) 

where all functions are 2n-periodic in 0s and, in addition, 13~(0s) are odd functions of 0s. Therefore, 
I~*(l,n) = 0 and 

ii 

det q- (n) = x" nct,*. (0) (exp(K,./.,n) - exp(-r,/.,.rO} 
s = l  

Consequently, if Ks ¢ +-. i vs/ls (vs = 1 , . . . ,  Is: s = 1 . . . .  , n ) ,  the conditions for symmetric generating 
solutions (4.1) to be continuable to non-zero Ix are satisfied. 

It is obvious from the matrix (4.7) that in order to determine the characteristic exponents one has 
to compute the value at 0 = 2n of only one particular solution with initial data, say, x(0) = 1, x'(0) = 
0. Then 2A = 2x(27r) = e 2nK + e -2hr .  Thus the solutions can be continued if As ;~ cos (21rvs//s) for all s. 
Figure 3 shows a plot of As versus the eccentricity es. Obviously, the quantities As do not take oitieal 
values except at a finite number of points. 

Theorem 2. If Ix ~< Ix*, the (n + 1)-body problem has a family of plane symmetric periodic orbits, 
which depend on the n + 1 initial data as parameters, which arise in a unique manner from the elliptic 
generating solutions (4.1). An exceptional situation occurs at a finite number of eccentricities, when 
such symmetric periodic orbits may fail to exist when Ix ;~ 0. 
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~5 7 

Fig. 3. 

All the bodies, moving in symmetric periodic orbits, intersect the set of fixed points of the 
automorphism. If this set is the ~ axis, then the bodies Ms line up periodically, at intervals T = ~/~, 
along the ~ axis, forming a "parade of planets". When this happens the motion of the system is, of course, 
resonant: the mean motions relate to one another as integers. 

Cases in which the eccentricities es of the generating solution (4.1) are small are of particular interest. 
The characteristic exponents are then [6] 

~.,. = i(4 - 3 / ~ ) + . . .  

and the conditions for the motions (4.1) to be continuable for non-zero g are clearly satisfied. 

Theorem 3. For sufficiently small values of the eccentricities es of the generating elliptic solution (4.1), 
symmetric periodic orbits exist for g ¢ 0 also. 

5. THE S U N - P L A N E T - S A T E L L I T E S  SYSTEM 

The results just established are not only applicable to Sun-planet type systems. Indeed, let us rewrite 
(2.1) as 

+ roi +gJ=2J  L r,'j rdj.] 

+ T  ,), .. L r.,.) %_1 

where now g = max2 ~< s ~< n (~}  and gl may be substantially greater than 1 + ~ (s = 2 , . . . ,  n). Then 
when g = 0 the equations for M1 admit of a solution in which M1 describes a circle al at constant angular 

2 3 velocity ~ (cola1 = k Ix1). From the mechanical point of view, it is clear that for sufficiently large al 
(small oh) the effect of M1 on the motion of the system of bodies consisting of a "planet" M0 and 
"satellites" M2 . . . . .  M, will be small; this should be expressed in mathematical terms by the smallness 
of the parameter. 

To prove this, let us change to variablesps, Ys, ~, assuming that the constants as, 0~s (s = 1 , . . . ,  n) 
are given by (3.2). :['his gives a system (3.3) with summation running fromj = 2 to n, while the term 
withj = 1 determines the effect of M1 on Ms (s = 2 . . . .  n). Assuming now that as "~ al (s = 2 . . . . .  n), 
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we set as* = as~a1. Then the factor multiplying the term withj  = 1 is[B1/(1 + ttl)] (fD1/fOs) 2. Therefore, 
if (tol/tos) 2 is of the same order of magnitude as tt, the term wi th j  = 1 may also be included in the 
perturbations. 

When tt = 0 this system admits of the trivial solution p = 0, 0 = 0, ~ = 0. These solutions can be 
continued to non-zero ~t as in Section 3. 

Thus, a Sun-planet-satellites system admits of resonant periodic solutions such that, in a system of 
coordinates rotating at angular velocity COx around the planet, the satellites describe symmetric closed 
orbits which are nearly concentric circles. When n = 2 this yields symmetric orbits of the moon in the 
Sun-Earth-Moon system, constructed previously [7] within the framework of the limited three-body 
problem. 

In conclusion, we note that elliptic generating orbits in a Sun-planet-satellites system can also be 
continued. 

I am indebted to V. V. Rumyantsev for drawing my attention to the resonance phenomenon in the 
Solar system, and to V. V. Baletskii, for his interest in this research and for useful comments. 
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